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Abstract

This paper aims to experimentally verify the theoretical effects of energy pumping especially with external excitation.

Energy pumping is irreversible transfer of energy from a linear or linearized structure to a nonlinear energy sink (NES)

with relatively small mass. This NES can be used as a nonlinear absorber. This phenomenon is analyzed for different

kinds of excitation. In suitable range of amplitudes of the external forcing, the damped system exhibits quasiperiodic

vibrational regime rather than periodic responses reported in earlier publications. This regime can be explained by using

nonlinear normal mode theory. Mechanical experiments confirm the theoretical results by using a small building model.

In particular, the case of earthquake excitations is investigated.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Conventional vibration absorption devices, used in Civil Engineering, are linear and require the addition of
significant mass to the structure. Designers of structures, which may be subject to earthquakes, commonly
seek to reduce the total structural mass. Thus, it is important to develop new absorption devices that reduce
both stationary and transient responses while adding as little extra mass to the structure as possible.
Moreover, it is interesting to design new devices being able to absorb vibrations for a broad spectrum of
frequency. This is particularly important for the case of seismically forced systems that are not subject to
monochromatic inputs. Nonlinear passive absorbers can be designed with far smaller additional masses than
linear absorbers. They make use of the energy pumping phenomenon which has been studied recently [1,2].
This latter corresponds to a controlled one-way channeling [3] of the vibrational energy to a passive nonlinear
structure where it localizes and diminishes in time due to damping dissipation [4,5]. So nonlinear energy
pumping can be used in coupled mechanical oscillators [6] where the essential nonlinearity of the attached
absorber enables it to resonate with any of the linearized modes of the substructure [2]. A nonlocalized
nonlinear normal mode is thus introduced with strong oscillations in the second added structure far from the
main structure to be isolated and with very small oscillations in the first structure. So, through energy
ee front matter r 2006 Elsevier Ltd. All rights reserved.

v.2006.06.074

ing author. Tel.: +33 4 72 04 77 46; fax: +33 4 72 04 70 41.

ess: gourdon@entpe.fr (E. Gourdon).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2006.06.074
mailto:gourdon@entpe.fr


ARTICLE IN PRESS
E. Gourdon et al. / Journal of Sound and Vibration 300 (2007) 522–551 523
pumping, vibrations of a forced linear structure (subjected to an external excitation) can be attenuated with
the help of nonlinear coupling. Energy pumping can be used during earthquakes, where transient dynamics are
important. Numerical examples of the latter point are presented in Ref. [7].

In this paper, a nonlinear passive absorber, i.e. an energy sink, is attached to a linear primary structure.
The additional mass is connected solely to the top of the linear, or linearized, primary structure. This is an
example of a real application for vibration absorption in tall buildings. This paper aims to experimentally
verify the efficiency of employing the nonlinear energy pumping phenomenon in the case of building
vibrations.

To this end, an idealized simple building model, where only the fundamental sway mode is considered, was
designed, built and tested in Earthquake Laboratory of University of Bristol, UK. Damping and natural
frequency parameters of the idealized simple building model were chosen to be in the range of typical real low
rise buildings.

The outline of the paper is as follows. In the next section, the experimental and numerical considered
systems are introduced. In the third section, analytical and numerical studies are presented to show the
possible behavior of such a structure. The fourth section is devoted to experimental verification by using
different transient excitations.

2. System considered

By employing modal analysis the fundamental sway mode can be represented by an equivalent linear
oscillator. Thus, the analytical system consists of this linear oscillator, for the simple building structure, and a
strongly nonlinear coupled oscillator, for the nonlinear passive absorber (with a small mass). The nonlinear
terms are cubic in nature. The system excitation is either harmonic or transient in nature, i.e. an earthquake
motion.

The experimental system is shown in Fig. 1 and represented in Fig. 2. The secondary mass, of the absorber,
can slide along an aluminium roller guide rails fixed to the top of the simple building. x1ðtÞ and x2ðtÞ represent
Fig. 1. Experimental system.
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Fig. 2. Considered system with 2 dof.

Fig. 3. Design of the cubic nonlinearity.
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absolute displacements of the primary mass and of the secondary mass, respectively. xgðtÞ is the displacement
of the structural supports. For pragmatic experimental reasons, it is easier to employ absolute coordinates
rather than relative ones. m1 denotes the mass of the primary structure and m2 the mass of the second added
structure. In this experiment, the idealized viscous damping coefficient between the primary mass and the
supports is c1 and between the primary mass and the secondary mass is c2.

The supports of the simple building model are connected to a small-scale uni-axial shaking table. This table
was designed, built and tested at the Earthquake Laboratory of University of Bristol. Table itself is driven
by a computer controlled Linmot actuator (Linmot E1000 MT controller characterized by the ability to
efficiently stream almost any excitation profile: sine dwells, sine sweeps, random noises, pulses, earth-
quakes,. . .) which horizontally moves the table along linear ball bearing guide rails. As underlined in
Ref. [8] the cubic nonlinearity can be implemented geometrically with two linear springs. Thus, the
nonlinearity is experimentally implemented with two linear springs (k and l are, respectively, the stiffness
and the length of one linear spring) as shown in Fig. 3. The linear springs extend axially and are free to
rotate about their supports. Flexural behavior of the springs induced by inertial actions is neglected.
The stiffness force F ðuÞ—displacement u relationship is given by the following equation (1) which is
approximately cubic in nature with the help of a Taylor series expansion (where P is pre-stress force in the
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springs and juj51).

f ¼ 2kuþ
2uðP� klÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ u2
p �

2P

l
uþ

kl � P

l3
u3 þOðu5Þ. (1)

However, as underlined in Ref. [8] when the pre-stress force P is approximately zero, the linear terms of Eq. (1)
can be neglected. Experimentally P must be kept to a minimum. The springs have been calibrated by measuring
the deflection under a static load. By using a variety of different spring sizes it is possible to adjust the
coefficient in front of the cubic nonlinearity. Experimental derived values for F ðuÞ versus u are plotted in Fig. 4
and are fitted by using a nonlinear least square optimization procedure to identify the nonlinear characteristic.

It should be underlined that the cubic approximation in Eq. (1) has been widely used in such problems and
then the equations are easier to manipulate since theoretical analysis (with analytical expressions) is easier and
possible. However, in numerical simulations, since Runge–Kutta schemes are adopted, we will use the exact
expression. We will comment the relative error which is very small when we will use the cubic approximation.

Thus, the building and nonlinear absorber can be idealized by the model displayed in Fig. 5. The complete
system is given by the following equations:

m1 €x1 þ c1 _x1 þ k1x1 þ c2ð _x1 � _x2Þ þ k2ðx1 � x2Þ
3
¼ k1xg þ c1 _xg;

m2 €x2 þ c2ð _x2 � _x1Þ þ k2ðx2 � x1Þ
3
¼ 0;

(
(2)
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Fig. 4. Force–displacement characteristic of the nonlinear spring. The dots correspond to experimental results and the line corresponds to

a cubic fitting.

Fig. 5. Scheme of the considered system with 2 dof.
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where k2 ¼ k=l2. By defining � ¼ m2=m1 (�51) and o2
1 ¼ k1=m1, l1 ¼ c1=m2 l2 ¼ c2=m2, o2

2 ¼ k2=m2, then:

€x1 þ �l1 _x1 þ �l2ð _x1 � _x2Þ þ o2
1x1 þ �o2

2ðx1 � x2Þ
3
¼ o2

1xg þ �l1 _xg;

� €x2 þ �l2ð _x2 � _x1Þ þ �o2
2ðx2 � x1Þ

3
¼ 0:

(
(3)

Two PCB piezotronics accelerometers, with a good sensitivity at low frequencies, have been attached to the
structure (Fig. 1). One is connected under the plate of the primary mass and the other one is connected above
the secondary mass. Modal identification is performed by a pole-residual technique using Matlab structural
dynamic toolbox SDTools.

The experimental parameters are m2 ¼ 0:33 kg, m1 ¼ 3:3 kg so � ¼ 0:1. A modal analysis and experimental
dynamic analysis of the structures give o1 ¼ 29:2 rad s�1, c1 ¼ 1:4N sm�1, c2 ¼ 5N sm�1 and o2

2 ¼ 6:06�
105 Nm�3 kg�1. Thus l1 ¼ 4:24 and l2 ¼ 15:15. So the specific natural damping for the linear primary
structure (¼ c1=2m1o1) is 0:73% and the specific natural damping for the second added structure
(¼ c2=2m2o2) is 0:97% (Fig. 5).

The natural frequency of the primary structure, without the absorber, is 4.65Hz and is an approximated
value for the fundamental natural frequency of a two-storey building.

The use of the cubic approximation is justified here as shown in Fig. 6 where the exact expression in Eq. (1)
and the cubic approximation have been compared owing to numerical simulation (with a Runge–Kutta
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Fig. 6. Evaluation of the cubic approximation in Eq. (1): the solid line denotes the exact solution and the dotted line denotes the

approximation: (a) x1 with no coupling; (b) x1 with coupling; and (c) x2 with coupling.
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Fig. 7. Evaluation of the relative error by using the cubic approximation in Eq. (1): (a)jx1approx� x1exactj; (b) jx2approx� x2exactj.
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scheme). The values of parameters are the same as mentioned previously (with k ¼ 780Mm�1, l ¼ 0:109m,
x1ð0Þ ¼ x2ð0Þ ¼ _x20 ¼ 0, _x10 ¼ 1:2). The two cases are quasi identical. We can also compare the relative error
as shown in Fig. 7 which is very small when the cubic approximation is used. The maximum of the error is
7:71� 10�4 for x1 and 3:32� 10�3 for x2. The error is smaller for x1 since the cubic approximation is less
important in the equation of motion of the first mass.

3. Theoretical analysis and numerical study

First, impulsions with free oscillations are considered. By means of appropriately designed electric circuit as
shown in Fig. 8, previous Eqs. (2), (3) can be analyzed; such experiment allows to estimate the robustness of
energy pumping as the electric circuit inevitably contains additional damping and other factors not accounted
in the analytic and numerical models. As shown in Fig. 9, energy transfer from the directly excited
linear oscillator to the unexcited nonlinear oscillator takes place with attenuation of oscillations of the linear
structure and resonance of the second nonlinear oscillator with the same frequency (which defined a 1:1
resonance). Secondly, pure harmonic forcing xg ¼ G cosðotÞ is considered. Let o ¼ o1 ¼ 29:2 rad s�1; thus
the dynamics of the system are analyzed in the vicinity of the most dangerous resonance. The frequency
of the external excitation is hence the natural frequency of the linear oscillator. Numerical simulations,
using a Runge–Kutta scheme, show the quasiperiodic vibrational regime of the damped system in Fig. 10
where o2

1G ¼ 2:5m s�2. To confirm that this solution is quasiperiodic and not periodic, the Poincaré’s
sections for the two oscillators are shown in Fig. 11. Here, the Hénon trick is used. The Poincaré application is
defined by

Pðxi0Þ ¼ xiðxi0; t0; t0 þ TÞ; i ¼ 1; 2, (4)

where xi0 are the solution of initial system (2) which go through the point xi0 at time t ¼ t0 and T ¼ 2p=o. The
points xi0, xi1 ¼ Pðxi0Þ, xi2 ¼ P2ðxi0Þ; . . . correspond to the intersection of the trajectory xiðxi0; t0; tÞ with
the planes t ¼ t0, t0 þ T , t0 þ 2T ; . . . ; respectively. Those points form a sequence of stroboscopic images of the
solution at regular time intervals Dt ¼ T [9].
Fig. 8. Considered system with 2 dof by means of electric circuit.
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Fig. 9. Results obtained by means of electric circuit.

E. Gourdon et al. / Journal of Sound and Vibration 300 (2007) 522–551528
One possible application of this proposed nonlinear absorber is related to absorption of vibrations in
mechanical systems. This paper differs from previous studies [10–12] since a strong nonlinearity is proposed
here. This system (3) may exhibit types of motion unavailable in linear or weakly nonlinear vibration
absorbers. The energy of vibrations is transferred to the second added oscillator and damped out in
quasiperiodic regime and thus the attenuation of vibrations of the primary mass is achieved. Indeed, we will
see that in the regime of quasiperiodic response the nonlinear oscillator ensures better suppression of
oscillations than the best linear absorber with the same mass. In particular, this absorber seems to be quite
effective during transient time [8,13]. That is why the use of this nonlinear absorber during real transient
excitations (like real earthquake records) can be considered. The theoretical jump from sinusoidal forcing to
earthquake is not obvious. However, the earthquakes considered in this study are seen as impulsions (a lot of
energy in a very small time) and it appears from the response spectrum that those earthquakes have only one
main peak so they are almost monochromatic. For example, consider accelerogram data from the Friuli (Italy,
06/05/1976) earthquake at the Tolmezzo-Diga Ambiesta station, the N-S horizontal component (all the
earthquake data are extracted from the CD-rom ‘‘Strong Motion Database Navigator’’ (Copyright (c) 1996-
2000 CubicSoft)). The response spectrum (i.e. the acceleration response spectrum) is displayed in Fig. 12. Let
the parameters of Eq. (3) for the nonlinear attachment be: o2

2 ¼ 8� 105, � ¼ 0:06, l2 ¼ 8:17 (so the specific
natural damping in the nonlinear system is 0:46%). Energy pumping and attenuation of the linear oscillator
occur as shown in Fig. 13. It appears that the vibrations of the added structure, after resonating, are totally
destroyed at t ¼ 7:5 s as shown in Fig. 13c. This phenomenon can be better seen in Fig. 14 where the intensity
of the earthquake has been amplified. This figure shows that when the vibrations of the primary structure x1

overcome a certain value (at t ¼ 4:7 s), then the nonlinear added structure (x2) resonates. Therefore,
attenuation of x1 occurs and we can clearly see the total destruction of x2 at t ¼ 6 s (brutal change of
frequency) which guarantees a better attenuation (as we will see further) of vibrations of x1.

It should be noted, in this example, that the maximum displacement is not necessarily attenuated
significantly, since energy pumping occurs above a certain threshold value of amplitude. However, above this
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the case in which no absorber is present), the thick line denotes the displacement of x1 with coupling (i.e. the case in which the

absorber is present) and the thin line — the displacement of x2 with coupling.
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threshold value, the vibrations are then attenuated efficiently. The magnitude of the power supplied, by the
ground acceleration, to system (3) and particularly the timing of this supplied power is critical. In order to
determine the efficiency of energy pumping it is necessary to use some indicator of supplied input power. Arias
intensity is a measure of the total power supplied by the ground motion to the system. It correlates well with
several commonly used demand measures of structural performances, liquefaction, and seismic slope stability.
Arias intensity is defined by Arias [14] as

Ia ¼
p
2g

Z 1
0

aðtÞ2 dt, (5)

where Ia is the Arias Intensity in units of length per time, g is the acceleration of gravity and aðtÞ is the
acceleration–time history in units of g. We can also define a modified Arias Intensity Ir of the responses of
structures by

Ir ¼
p
2g

Z 1
0

€xiðtÞ
2 dt; i ¼ 1; 2, (6)

where €xiðtÞ; i ¼ 1; 2 are the accelerations of the two structures in units of g. Thus, it is possible to plot the Ir of
the response (acceleration) of structure as a function of the Ia of the earthquake excitation €xg. The Arias
intensity of the ground motion typically increases with an increase in earthquake magnitude; though at larger



ARTICLE IN PRESS

-3.2 -3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4

x 10-3

0.55

0.6

0.65

0.7

0.75

x1

dx
1/

dt

-0.036 -0.034 -0.032 -0.03 -0.028 -0.026 -0.024 -0.022 -0.02 -0.018 -0.016
-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

x2

dx
2/

dt

(a)

(b)
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Fig. 13. Energy pumping with a real earthquake in Friuli (Italy); (a) primary structure without coupling (i.e. the case in which no absorber

is present); (b) primary structure with coupling (i.e. the case in which the absorber is present); (c) attached structure with coupling.
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earthquake magnitudes the relationship is not linear. Fig. 15 displays the excitation and response Arias
intensities for the primary structural mass, the secondary mass and for the primary structure in the case in
which no absorber is present. A log scale is used for axes in order to underline the nonlinear effects and the
interest of energy pumping. Indeed, when no coupling is considered (the case in which no absorber is present),
the plot is a line for a linear oscillator.

In this Fig. 15, the transfer of energy from the primary structure to the secondary one appears for the Ia of
€xg equals to 0:04m s�1. Far from this point, curves are lines because the second oscillator behaves like a linear
tuned mass damper. Energy pumping only occurs above this threshold value of amplitude. The attenuation of
the acceleration of the primary mass occurs with the growth in acceleration of the secondary mass. The
destruction of the resonance regime in the second structure results in an abrupt decrease of power of the
primary mass. Consider Fig. 16 where two different amplitudes of ground motion have been applied; one
below and one above the threshold value.
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Moreover, for a periodic excitation and to better understand the interest of energy pumping compared to
classical linear tuned mass damper, the amplitude–frequency curves can be plotted. For example, two cases
can be compared: (i) a primary structure with an optimal linear tuned mass damper (the optimization is
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described in Ref. [15]: k2 ¼ 232:54Nm�1) (ii) a primary structure with a nonlinear attachment o2
2 ¼ 8� 105,

� ¼ 0:1, l2 ¼ 7 (so the specific natural damping in the nonlinear system is 0:39%). The damping coefficient and
mass of the secondary added system are identical in both cases. Results are displayed in Fig. 17 for an
harmonic excitation. The solutions for the nonlinear system have been calculated using the method described
in Ref. [16]. The advantage of strong cubic coupling is that the curve with coupling (i.e. the case in which the
absorber is present) is always under the curve without coupling (i.e. the case in which no absorber is present)
and the main features of the primary structure to be isolated are not modified contrary to the addition of a
classical Frahm damper. Indeed, in Fig. 17 for 20ooo25, the linear absorber is not effective and it is even
dangerous for the primary structure. As shown in Fig. 18 with a classical tuned mass damper and far from the
main resonance two others peaks can appear. This latter point can be dangerous for the primary structure for
example during an earthquake where several frequencies can be excited. The experiments confirm this point.
The advantages and disadvantages of the two kinds of absorbers can be summarized in Table 1 in which the
disadvantages have been underlined:

In the following theoretical analysis, the case of periodic excitation and the case of impulse with free
oscillations (G ¼ 0 but nonnull initial conditions) are both considered. All this theoretical study is mainly
based on Ref. [17]. Change of variables:

v ¼ x1 þ �x2; w ¼ x1 � x2 (7)
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Table 1

Comparison of the strongly nonlinear coupling with a linear tuned mass damper

Strongly nonlinear coupling Linear tuned mass damper

Fitted to attenuate the whole frequency span of a mode Fitted to attenuate a single frequency or narrow surrounding band

Reliable attenuation of natural frequency Optimal attenuation of targeted frequency

Attenuation curve always remains underneath uncontrolled FrF Possible amplification outside targeted frequency band-width

Little sensitive to frequency shifts FrF (structural damages,

durability)

Sensitive to frequency shifts

Range of application: Range of application:

Attenuation triggered beyond an attenuation as soon as low forcing

amplitude threshold amplitude levels

amplitude-dependent attenuation attenuation gain independent from

excitation level

Free oscillations: Yes/Steady vib.: Yes Free oscillations: Yes/Steady vib.: Yes

Transient vibrations: Yes Transient vibrations: No

Simultaneously control of several modes: No
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Fig. 18. Comparison with a classical tuned mass damper. The thick line denotes the cubic coupling, the solid line denotes the tuned

mass damper and the dotted line - - denotes the curve without coupling.
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allows reducing Eqs. (3) to the following form (where G ¼ �F ):

€vþ
�l1
1þ �

_vþ
�2l1
1þ �

_wþ
o2

1

1þ �
vþ

o2
1�

1þ �
w ¼ �o2

1F cosðotÞ � �2l1F sinðotÞ;

€wþ
�l1
1þ �

_vþ
�2l1
1þ �

þ ð1þ �Þl2

� �
_wþ

o2
1

1þ �
vþ

�o2
1

1þ �
wþ ð�þ 1Þo2

2w
3

¼ �o2
1F cosðotÞ � �2l1F sinðotÞ:

8>>>>>><
>>>>>>:

(8)

This change of variables physically corresponds to consideration of the center of masses and internal
displacement of the system of oscillations. Then new small parameter is introduced and the dependent
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variables are rescaled as follows:

X ¼ �1=3 ; V ¼ X�1v ; W ¼ w. (9)

With account of Eq. (9), System (8) is reduced to the following form (only terms up to order of OðX2Þ

are kept):

d2V

dt2
þ o2

1V þX2o2
1W ¼ X2o2

1F cosðotÞ;

d2W

dt2
þ l2

dW

dt
þXo2

1V þ o2
2W

3 ¼ 0:

8>>><
>>>:

(10)

Now, a time-scaling is done by posing t ¼ o1t, thus:

d2V

dt2
þ V þX2W ¼ X2F cosðOtÞ;

d2W

dt2
þ a

dW

dt
þXV þDW 3 ¼ 0;

8>>><
>>>:

(11)

where a ¼ l2=o1, D ¼ o2
2=o

2
1 and O ¼ o=o1. In the following studies, differentiation with respect to the

variable t (scaled-time) will be denoted by dots. As stated above, the goal of present investigation is the
exploration of nonlinear normal modes of Eqs. (3) in the vicinity of 1:1 resonance (a 1:1 resonance is a
resonance occurring between the two oscillators, each oscillating with the same frequency). It means that both
variables, V and W, are supposed to have frequency close to unity (in the new time domain). Besides, the
dynamics of the system is analyzed in the vicinity of the most dangerous resonance and therefore the frequency
of the external excitation also is adopted to be close enough to unity:

O ¼ 1þX3s. (12)

Therefore, it may be adopted that both variables are expressed as

V ¼ cosðtþ m1ðXtÞÞf 1ðXtÞ;

W ¼ cosðtþ m2ðXtÞÞf 2ðXtÞ;

(
(13)

where mi; i ¼ 1; 2 takes into account phase shift and slow phase drift and f i; i ¼ 1; 2 slow amplitude
modulation. We restrict ourselves by considering only phase trajectories with initial conditions inside the
domain of attraction of 1:1 resonance manifold. Eqs. (11) may be reshaped to the following form:

€V þ V þX2W ¼ X2F cosðð1þX3sÞtÞ;
€W þW þXðd½a _W þDW 3 �W � þ V Þ ¼ 0;

(
(14)

where d ¼ X�1. If the estimation presented in Eqs. (13) is valid, then one obtains:

€W ¼ � cosðð1þOðXÞÞtþ j2Þf 2ðXtÞ þOðXÞ ¼ �W þOðXÞ. (15)

It means that in order to balance power 1 of small parameter X in the second equation of Eqs. (14), one must
adopt

d½a _W þDW 3 �W ��Oð1Þ (16)

and therefore expression in square brackets should be of order X. It is rather natural, as it describes slow
modulation and damping of the vibrations with frequency close to unity. Then the theoretical study is similar
to Refs. [17,18] so only final results are given in what follows. Indeed, after using complexification method [19]
(c1 ¼

_V þ jV ; c2 ¼
_W þ jW ), by assuming fast oscillations (ci ¼ jie

jt; i ¼ 1; 2) and by introducing
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multiple scale analysis [20]:

jk ¼ jk0 þXjk1 þX2jk2 . . . ; k ¼ 1; 2,

tl ¼ Xlt;
d

dt
¼

q
qt0
þX

q
qt1
þX2 q

qt2
þ � � � (17)

the following equation is obtained:

qj20

qt2
¼

F ½6D
8 j2

20e
�jst3 þ ð1þ ja� 12D

8 jj20j
2Þejst3 � � 18D

8 j20jj20j
2 þ ðj� aÞj20

2dð1þ a2 � 24D
8
jj20j

2 þ 108D2

64
jj20j

4Þ
. (18)

For 0oao 1ffiffi
3
p , Eq. (18) exhibits singularities due to possible nullification of the denominator. Indeed, for

0oao 1ffiffi
3
p , a bifurcation occurs, i.e. ‘‘the regime of the nonlinear normal mode is broken down resulting in

rather abrupt decrease of both amplitudes. The phase trajectory of the coupled system leaves the resonance
manifold and the nonlinear normal mode is totally destroyed as a result of passage through the bifurcation’’
[17]. So, by considering an impulse for excitation with free oscillations, then under the critical value of a,
the regime of the nonlinear normal mode is broken down with rather abrupt decrease of amplitudes x1 and x2,
the second oscillator continues oscillating with the same frequency where as the first totally changes its
behavior. This last point was underlined in Ref. [13]. In the case where the nonlinear damping is above the
critical value, therefore no bifurcation of the invariant manifold exists so the damped nonlinear normal mode
persists in all time domain. In Ref. [13], it was shown with energy studies that the passage of the phase
trajectory through the bifurcation of the invariant manifold essentially facilitates the energy dissipation (more
abrupt decrease of energy). So, by considering an impulse for excitation with free oscillations, this
phenomenon will occur if:

0oao
1ffiffiffi
3
p ; i.e. c2o

m2

ffiffiffiffiffi
k1

pffiffiffiffiffiffiffiffiffi
3m1

p or xðspecific natural dampingÞo

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4k1m2

3k2m1

s
. (19)

Under constant external loading such branch structure may give rise to quasiperiodic oscillations (see, e.g.
Ref. [21]). It means that in certain range of the external forcing intensity and the damping coefficient. System
(3) is expected to demonstrate quasiperiodic oscillation regime instead of previously studied [16] periodic
response. The numerical simulations of system (3) with zero initial conditions verify the later conclusion.
Indeed, in Fig. 10, we have a ¼ 0:52o 1ffiffi

3
p and the plot demonstrates typical quasiperiodic behavior of both

responses (x1 and x2). This behavior was also revealed for long-time simulations. In order to verify the
suggested explanation of this phenomenon (breakdowns of motion on 1:1 resonance (i.e. resonance with the
same frequency for each oscillator) invariant manifold due to singularities accompanied by successive
attractions of the phase trajectory to another branch) we plot the internal coordinate of the system (x1 � x2)
versus time (with the same parameters as previously in Fig. 10: a ¼ 0:5188 and D ¼ 711) and compare it with
critical values of this function which correspond to singularities of Eq. (18) (Fig. 19). It is easy to see that the
variation in peak amplitude of the internal coordinate follows the critical values with good accuracy and
therefore the system primarily moves in different regimes resulting in quasiperiodic regime. The other
argument in favor of the suggested scenario is that no quasiperiodic response was revealed for values of a

above the range 0oao 1ffiffi
3
p . The reason suggested is that for these values of the damping coefficient the

bifurcation is no more possible. The Neimark bifurcation which occurs can be shown by a bifurcation diagram
as shown in Fig. 20. This Fig. 20 shows the Poincaré’s sections versus the parameter l2 with the same
parameters as previously (for each section zero initial conditions are considered since in practical
experimentation, the masses will be initially at rest). It should be noted that when l24l2critical periodic
solutions are found and when l2ol2critical quasiperiodic solutions are found. In this figure it can be clearly seen
that under the critical value of damping (l2critical ¼ 15:8), the oscillations of the nonlinear oscillator are
stronger. If the amplitude of the external excitation is varying then the bifurcation can be seen as shown in
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Fig. 21. This Fig. 21 shows the Poincaré’s sections versus the parameter o2
1G with the same parameters as

previously. It should be noted that quasiperiodic regime occurs only above a critical value of external
excitation.
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Moreover, the results can be generalized. The case we have considered is only for one set of ðm1; k1Þ, i.e. only
one configuration of the building. It remains to explore the influence of natural frequency to underline the
interest of such a nonlinear device compared to classical tuned mass damper. Thus, we can plot the
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spectrum response, i.e. the displacement response spectrum: for different sets ðm1; k1Þ (i.e. o1) of the
building, we plot the peak (the maximum of the displacement) when a periodic forcing (of frequency o ¼ 29:2
for each set ðm1; k1Þ) is applied as illustrated in Fig. 22. Thus, this figure demonstrates some broadening of
the suppression frequency range. This is a key advantage of the NES compared to classical tuned mass damper
(The NES is more robust). Indeed, a classical tuned mass damper is adjusted and fitted for only one set
of ðm1; k1Þ but it is not efficient anymore if the stiffness is changing (because of the ageing of the structure
for example).

As application, Fig. 13 shows the case of an earthquake excitation. In this figure, first we can clearly see the
fact that when the primary structure overcomes a certain value (in Fig. 13b) at t ¼ 4 s then the nonlinear
structure resonates (in Fig. 13c). Secondly we can clearly see in Fig. 13c the fact that the nonlinear normal
mode is totally destroyed at t ¼ 7:5 s.

In the scope of this energy pumping validation, experimental measurements have to be investigated by
mean of a suitable signal processing tool. Such a post-process must enable observation of expected resonance
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captures and vanishing nonlinear normal modes with de-noising capabilities. The final aim is to accurately
obtain instantaneous frequencies values. A new wavelet-based methodology, namely quasicontinuous
mapping [22], is then applied to experimental measurements. This time-frequency analysis allows to
thoroughly investigating experimental measurements. For instance frequencies superposition can be identified.
It would appear in maps as a vertical juxtaposition of contours. Such an identification is very difficult
with analysis such as Hilbert Transform [23] or dyadic wavelet analysis [24,25]. Moreover, a succession of
contours with small radius during a temporal range dt and within a constant frequency level x reveals
the presence of a pattern with central frequency x on the time-interval dt. In addition a set of contours
with small radius successively defined from frequency x1 to frequency x2 highlights a frequency migration on
the frequency range ½x1; x2�. A matlab interface program based on Cþþ wavelet library has been developed
at ‘‘Laboratoire Géomatériaux’’ of ‘‘Ecole Nationale des Travaux Publics de l’Etat’’ that allows to quickly
and accurately map experimental signals in the time–frequency half-plane. From this way the relevant
frequency content of experimental measurements is investigated with inner de-noising capabilities of
wavelet analysis. As concerned this study both resonant captures and nonlinear normal modes are highlighted
and quantitatively investigated. For example, by taking � ¼ 0:06, l2 ¼ 8 (so the specific natural damping in
the nonlinear oscillator is 0:44%), C ¼ 8� 105, o1 ¼ 10p, F ¼ 0 (an impulse is considered) the critical value
of nonlinear damping l2 is 10p=

ffiffiffi
3
p

. So by using the wavelet method, we can see in Fig. 23 (where the wavelet
tools are used for x2) that when l2 ¼ 8 is under the critical value energy pumping is more efficient since
the nonlinear normal mode is totally destroyed where as when l2 ¼ 22 (so the specific natural damping of the
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nonlinear oscillator is 1:23%) is above the critical value energy pumping is less efficient since the nonlinear
normal mode persists in all time domain as shown in Fig. 24.

Indeed, as shown in Fig. 23 thanks to the 1:1 resonance capture (around 5Hz), energy is irreversibly
transferred from the primary mass to the nonlinear attachment. It can also be observed that this nonlinear
energy pumping is initiated by the excitation of transient modes as shown in Fig. 23b between 0 and 0.5 s
(some higher frequencies are excited at the beginning of the response). Moreover, the nonlinear normal mode
slightly decreases between 0 and 1.5 s (succession of contours with small radius but not at a constant level
of frequency: the level of centers is decreasing around 4.85Hz) and it is completely destroyed at t ¼ 1:5 s
which produces the quasi complete attenuation of the response of the primary structure as shown in Fig. 23c.
In Fig. 24b, it clearly appears that the nonlinear normal persists in time domain between 0 and 2.5 s
(succession of contours with small radius at a constant level of frequency 4.92Hz) that is why no bifurcation
occurs and the response of the primary structure is less attenuated as shown in Fig. 24c.
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4. Experimental verification

First of all, to verify that when 0oao 1ffiffi
3
p , the regime of the nonlinear normal mode is broken resulting in

rather abrupt decrease of both amplitudes, the case of the absence of external forcing is considering. Indeed,
first of all, impulse (on the upper part only) with free oscillations (xg ¼ 0) are considered. Experimentally, a
nonnull initial displacement of the primary structure is considered with all other initial conditions null. This
initial displacement is the same for studying the case with coupling (i.e. the case in which the absorber is
present) and without coupling (i.e. the case in which no absorber is present). The different measured
accelerations with and without coupling are given in Fig. 25.

Clearly, it appears that with the presence of the strongly nonlinear coupling, energy pumping occurs, i.e.
attenuation of the acceleration of the primary structure with resonance of the nonlinear structure. Moreover,
by using the wavelet analysis (for x2) in Fig. 26, it is shown that the nonlinear normal mode (represented in
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Fig. 26a) is totally destroyed through the passage of a bifurcation: the resonance occurs only between 0 and 1s
and the nonlinear mode decreases as shown in Fig. 26b. It should be underlined that this phenomenon occurs
only if the initial displacement of the primary structure is sufficient. This last point has been described in
Ref. [2]. In this case, we have good agreement between experimental and numerical results.

Then, the case of periodic excitation with an external frequency closed to the natural frequency of the
primary structure (i.e. 4.65Hz) can be considered: an external forcing equals to 4.5Hz is thus chosen (so
s ¼ �0:32 with the notations of the previous section O ¼ 1þ �s). The experimental measured accelerations
without the presence of the absorber and with presence of the strong coupling are plotted in Fig. 27 for
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sufficient amplitude of the external forcing. It should be noted that for the case without coupling,
we have stopped the external forcing at t ¼ 3 s because the resonance became dangerous for the safety of the
structure.

As shown in Fig. 27, absorption of vibrations in mechanical system is achieved with a good efficiency.
Moreover, in the transient time, Fig. 27 shows that quasiperiodic phenomenon described in the theoretical
study occurs. This motion appears to be clearly quasiperiodic motion and not transient behavior since it is still
present after t ¼ 12 s as shown in Fig. 28. In the transient time, by mean of wavelet analysis, Fig. 29 shows that
jumps phenomena (i.e. brutal change of frequency due to bifurcation) described in the theoretical study occur.
Moreover, as shown in Fig. 29b, during one phenomenon (for example between 1 and 2 s) we can clearly see
that the nonlinear normal mode decreases (first 5.12Hz, then 4.60 and 4.01Hz): the nonlinear normal is
destroyed; after there is the same resonance capture due to the continuous forcing. With Fig. 29c, it
is underlined that when there is resonance of the nonlinear normal mode, the response of the primary structure
is attenuated. Because of the continuous external forcing (with a frequency closed to the natural frequency of
the linear structure), the linear response then increases again and energy pumping is activated only when the
amplitude of the linear structure is above a certain value (for example at t ¼ 1 or 3 s) as shown in Fig. 29c. This
plot shows that, energy pumping occurs above a specific value of the initial energy level as underlined in
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Ref. [26]: so when energy injected is too low, energy transfer from the linear structure to the nonlinear one
does not appear. This quasiperiodic motion underlined in Ref. [17] is highlighted with the wavelet analysis.
Thus, the presence of strong nonlinear coupling may exhibit types of motion (as seen in the previous part)
unavailable for linear or weakly nonlinear vibration absorbers. However, the system under consideration
exhibits this kind of response only for certain amplitude range of the external forcing otherwise it corresponds
to periodic regime, which is less interesting than a linear tuned mass damper although some broadening of the
suppression frequency range may be demonstrated. Indeed, when the amplitude of the external forcing is not
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enough sufficient, this quasiperiodic motion does not appear as shown in Fig. 30 (the Fig. 28 shows that the
phenomenon of the quasiperiodic motion for x1 and x2 is a long time phenomenon).

To verify this quasiperiodicity (incommensurate frequencies), we can plot the experimental first-return map
of the primary structure (x1ðtÞ) as shown in Fig. 31. This first return map is just derived from the the Hénon

trick (explained in the third section) by plotting x1ðnþ1Þ versus x1n. This first return map is often used for
experimental (or numerical) data to avoid mixing results and uncertainties of several measured data issued
from different accelerometers.

As shown in Fig. 31, the first-return map is either a point (so a periodic motion) as shown in Fig. 31a, either
a closed loop (as shown in Fig. 31b), so a quasiperiodic motion when the forcing amplitude is above a certain
value. The experimental results confirm the numerical ones.

Moreover, as underlined in the previous section, one possible application is related to absorption of
vibrations particularly during earthquakes where the forcing occurs during the transient time. The actuator is
piloted in displacement by a function generator (TTi 40MHz Arbitrary Waveform Generator TGA 1241) in
which it is possible to load a desired signal. All the earthquake data are extracted from the CD-rom ‘‘Strong
Motion Database Navigator’’ (Copyright (c) 1996–2000 CubicSoft). Those data are transformed in terms of
displacements to apply them to the small building model. For instance, we can apply to the primary structure
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the earthquake of Friuli (Italy) (the same as the numerical studies; the peak acceleration of the accelerogram is
scaled to equals 4m s�2 and then is transformed into displacement) with the presence of the absorber and
without the presence of the strong coupling (i.e. without absorber). The results are presented in Fig. 32.

In Fig. 32, the NES appears to be efficient as vibration absorber for transient forcing. In this figure, we can
perfectly see the effect of NES: indeed, when the energy is transferred to the second mass (resonance of x2)
then the nonlinear normal mode is destroyed (abrupt decrease of x2 for instance at t ¼ 5 s in Fig. 32c) which
has for consequence to dissipate the vibrations of x1 instantaneously. As described previously in the numerical
study, the maximum of the response of the primary structure with coupling (Fig. 32b) may be still important
but after this point, in time, the vibrations are attenuated with a good efficiency. That is why, it is possible to
verify experimentally the curve of the Arias Intensity Ia by changing the intensity of the earthquake ground
motion and to see the transfer of energy. Experimental results and numerical one are in good agreement as
shown in Fig. 33.

Nevertheless, it should be underlined that the maximum peak can be attenuated a lot depending on the
earthquakes. For example, if the Annecy earthquake (France, 15/07/1996) is considered, then the maximum
peak is attenuated with a ratio of 60% as shown in Fig. 34.

Moreover, the results can be generalized. The case we have considered looks very convincing, however, it is
only for one set of ðm1; k1Þ, i.e. only one configuration of the building. It remains to explore the influence of
natural frequency to underline the interest of such a nonlinear device compared to classical tuned mass
damper. Thus, we can plot the spectrum response, i.e. the displacement response spectrum: for different sets
ðm1; k1Þ (i.e. o1) of the building, we plot the peak (the maximum of the displacement) when the excitation is the
Annecy earthquake as illustrated in Fig. 35. Thus, this figure demonstrates some broadening of the
suppression frequency range. This is a key advantage of the NES compared to classical tuned mass damper
(the NES is more robust). Indeed, a classical tuned mass damper is adjusted and fitted for only one set of
ðm1; k1Þ but it is not efficient anymore if the stiffness is changing (because of the ageing of the structure for
example).

In order to show that this study is not only dependent on a specific earthquake, Fig. 36 displays similar
results with Alkion earthquake (Greece, 24/02/1981, station of Xilokastro-OTE; the peak acceleration of the
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accelerogram is scaled to equals 2m s�2 and then is transformed into displacement) which has been applied to
the primary structure. In Figs. 32, 34, 36, there is resonance of the nonlinear added structure so attenuation of
the vibrations of the primary structure.

5. Conclusion

Experimental verification of analytic and numerical results of nonlinear energy pumping has been
performed by means of appropriately small designed building model. The experimental results demonstrate
that the system exhibits the energy pumping from ‘‘large’’ to ‘‘small’’ mass by mechanism of 1:1 resonance,
accompanied by generation of quasiperiodic vibrations. The quasiperiodicity has been found experimentally
for the small building model. That is why, experimental results demonstrate that the quasiperiodic response
regime associated with energy transfer to NES can be applied in Civil Engineering systems (the different
parameters have been chosen to correspond to Civil Engineering problems). One possible application is related
to absorption of vibrations in mechanical systems. Attenuation of the primary structure is achieved owing to
this strong nonlinear coupling. In particular, the system appears to be quite effective with different earthquake
excitations. For practical applications, it is very interesting since it is difficult to attenuate a lot of energy in a
very short time owing to the classical tuned mass damper. Moreover, the added mass with the NES can be
smaller than with classical tuned mass damper which is very interesting for practical applications. The case we
have considered looks very convincing, and as underlined in the present study, it is not only for one set of
ðm1; k1Þ, i.e. only one configuration of the building. Indeed, the influence of natural frequency has been
explored. Some broadening of the suppression frequency range has been illustrated, so the results have been
generalized. Indeed, in practical applications the natural frequency is changing (because of the ageing of the
structure for example). In this case, the NES will be effective, which is not the case with classical tuned mass
dampers which are fitted for one specific natural frequency (no additional design/adjustment is necessary with
the NES). Then, the theoretical jump from sinusoidal forcing to earthquake is not obvious. However, the
numerous experimental and numerical results show the good efficiency of such a NES for different
earthquakes. Then, the system under consideration exhibits the desired behavior only for certain amplitude
range of the external forcing and the phenomenon occurs only above a certain amplitude. The aim for further
research is to achieve broader range of quasiperiodic response. In particular, the use of multiple nonlinear
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Fig. 36. Experimental results with a real earthquake forcing (Alkion in Greece): (a) acceleration of xg (in m s�2); (b) acceleration of x1 (in

m s�2) without coupling; (c) acceleration of x1 (in m s�2) with coupling; (d) acceleration of x2 (in m s�2) with coupling.
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normal modes (as described in Ref. [23]) can increase the span in amplitude of injected energy where the
energy pumping phenomenon occurs.
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